If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+6y-360=0
a = 2; b = 6; c = -360;
Δ = b2-4ac
Δ = 62-4·2·(-360)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-54}{2*2}=\frac{-60}{4} =-15 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+54}{2*2}=\frac{48}{4} =12 $
| (2x-24)+(x-2)+x=180 | | 3x+4+2=7x-2 | | 2x+(21-2x)=21 | | 35x-5=12 | | 429÷3x=13 | | 6s=–8+5s | | –5w=–6w+10 | | 5x–4(x–3)=8 | | x=x+(3x+25)+(x-5)=180 | | 180=x+(3x+25)+(x-5)x= | | 180=x+3x+25+x-5 | | 180=x+(3x+25)+(x-5) | | x=(3x+35)x-5 | | y=34y-19 | | 15x/13-14x=15 | | X=34y-19 | | H=300-15t | | 3(2+x)-2(x-1)=7 | | CxC+C=210 | | 18n+150=402 | | (-8x+91)+(-4x+48)=2(x-6) | | 28-6=n | | 28+6=n | | 12n+14=194 | | x^2-33x+45=0 | | 3-2{9+2m}=m | | 3y+13=112 | | 15x÷13-4x=5 | | x+13+x+25=180 | | x(3x+48)=1260 | | 15x/13-4x=5 | | 2(2x+6)=8x+2 |